ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of lupinacidins A and B via sequential cycloaddition—double elimination

Kohei Sugimoto, Masaru Enomoto*, Shigefumi Kuwahara*

Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan

ARTICLE INFO

Article history: Received 26 May 2010 Revised 24 June 2010 Accepted 25 June 2010 Available online 30 June 2010

Keywords: Lupinacidin Antitumor Diels-Alder reaction Anthraquinone

ABSTRACT

The first synthesis of lupinacidins A and B, tumor cell invasion inhibitors of microbial origin, has been achieved in four operational steps from 3-methoxy-2-methyl-2-cyclohexenone via the Diels-Alder cycloaddition of a conjugated cyclohexadiene derivative with a juglone-derived sulfinyl quinone followed by sequential elimination of a sulfenic acid and ethylene to afford protected forms of the target molecules.

© 2010 Elsevier Ltd. All rights reserved.

In the course of screening for tumor cell invasion inhibitors of microbial origin, Igarashi and co-workers discovered two novel anthraquinones, lupinacidins A and B, from the culture broth of the endophytic actinomycete Micromonospora lupini Lupac 08 isolated from the root nodules of Lupinus angustifolius and determined their structures to be 1 and 2, respectively, on the basis of extensive spectroscopic analyses (Fig. 1). Lupinacidins A and B exhibited significant inhibitory effects on the invasion of murine colon 26-L5 carcinoma cells with IC₅₀ values of 0.07 μ g/mL and 0.3 μ g/ mL, respectively, while showing low cytotoxicity against the same cells (IC₅₀ >10 μg/mL, WST-1 staining method). The selective antiinvasive property of 1 and 2 suggests their potential as practical carcinostatic agents with few side effects. From a structural viewpoint, 1 and 2 are characterized by the presence of a 1,3-dihydroxy-2,4-dialkyl benzene unit embedded in the anthraquinone nucleus, which is unprecedented as a structural motif found in naturally occurring anthraquinones excluding anthraquinone dimmers (bianthraquinones).^{2,3} The unique substitution pattern and the medicinally important biological activity of 1 and 2 prompted our synthetic efforts toward lupinacidins A and B. We describe herein the first total synthesis of lupinacidins A (1) and B (2) through a concise cycloaddition-double elimination sequence.

Our retrosynthetic analysis of 1 and 2 is shown in Scheme 1. We envisaged that the anthraquinone derivatives 1 and 2 would be obtainable by the Diels-Alder cycloaddition reaction between a properly substituted naphthoquinone derivative 4 and a conju-

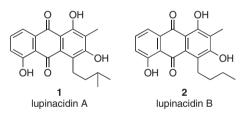
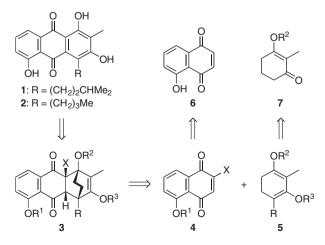



Figure 1. Structures of lupinacidins A (1) and B (2).

Scheme 1. Retrosynthetic analysis of 1 and 2.

^{*} Corresponding authors. Tel./fax: +81 22 717 8783 (S.K.).

E-mail addresses: me@biochem.tohoku.ac.jp (M. Enomoto), skuwahar@biochem.tohoku.ac.jp (S. Kuwahara).

Scheme 2. Synthesis of 1 and 2.

gated cyclohexadiene **5** followed by *syn*-elimination of HX from the resulting cycloadduct **3** and a subsequent retro-Diels-Alder reaction of the elimination product which would release ethylene to form the fully substituted benzene ring. The dienophile **4** in the Diels-Alder reaction should be prepared from a commercially available compound **6** (juglone) by regioselective installation of an appropriate leaving group (X), while the enophile **5** would be readily accessible from substituted cyclohexenone **7** via its alkylation followed by enol etherification.

According to the synthetic plan, a known juglone derivative 8, prepared in two steps from 6 by acetylation and regioselective installation of a tolylthio group, 4 was oxidized with MCPBA to afford dienophile **9**. The *p*-toluenesulfinyl group of **9** was chosen to effect the Diels-Alder reaction in a regioselective manner and also as a leaving group in the following elimination step (Scheme 2).⁵ The enophile (12) for the synthesis of lupinacidin A (1) was prepared by alkylation of the known cyclohexenone derivative 10 with 1iodo-3-methylbutane and by subsequent TES enol etherification of the resulting alkylation product 11.6 Due to its instability, the diene 12 was subjected in situ to the Diels-Alder reaction with 9 to give cycloadduct 13, which spontaneously liberated p-toluenesulfenic acid under the reaction conditions via a syn-elimination reaction, affording tetracyclic intermediate 14 as the only detectable regioisomer.^{5d} After being roughly purified by silica gel column chromatography, ⁷ **14** was heated in toluene to give anthraquinone **15** with the evolution of ethylene. 5d,6 The TES group of 15 was then removed by directly treating the reaction mixture containing 15 with a solution of aqueous hydrofluoric acid in acetonitrile to furnish 16 in a two-pot operation and 31% overall yield from 11. Finally, the treatment of 16 with BBr₃ in acetonitrile and subsequent workup with aqueous NaHCO₃ brought about the deprotection of the methoxy and acetoxy groups, giving lupinacidin A (1) (mp 235–237 °C, lit. 1 mp 234-238 °C) in 81% yield. The other target molecule 2 (mp 201–203 °C, lit. 1 mp 201–203 °C) was also synthesized in the same manner as described for 1 except that the initial alkylation of 10 was conducted with 1-iodobutane instead of 1-iodo-3-methylbutane. The ¹H and ¹³C NMR spectra of **1** and **2** were identical with those of natural lupinacidins A and B, respectively.

In conclusion, the four-step syntheses of lupinacidins A and B, featuring the Diels–Alder reaction of the suitably substituted diene **12** with the quinone dienophile **9** possessing a *p*-tolylsulfinyl group as a regiochemistry-controlling auxiliary followed by the sequential elimination of *p*-tolylsulfenic and ethylene, were achieved from the readily available starting material **10** in 14% and 9% overall yields, respectively. Synthesis of a variety of analogs of **1** and **2** as well as their structure–activity relationship studies is now underway.

Acknowledgments

We are grateful to Professor Yasuhiro Igarashi (Toyama Prefectural University) for providing the spectra of lupinacidins A and B. This work was supported, in part, by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 22380064).

Supplementary data

Supplementary data (experimental procedures, characterization data, and NMR spectra for new compounds) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.06.121.

References and notes

- 1. Igarashi, Y.; Trujillo, M. E.; Martínez-Molina, E.; Yanase, S.; Miyanaga, S.; Obata, T.; Sakurai, H.; Saiki, I.; Fujita, T.; Furumai, T. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3702–3705
- For synthetic anthraquinones with a benzene ring unit having the same substitution pattern, see: (a) Heller, G.; Lindner, P. Ber. Dtsch. Chem. Ges. 1922, 55B, 267–269; (b) Wang, J.; Pettus, L. H.; Pettus, T. R. R. Tetrahedron Lett. 2004, 45, 1793–1796; (c) Rezanka, T.; Dembitsky, V. M. Nat. Prod. Res. 2006, 20, 969– 980.
- 3. For examples of naturally occurring bianthraquinones having analogous substitution patterns, see: (a) Delle Monache, F.; D'Albuquerque, I. L.; De Andrade Chiappeta, A.; De Mello, J. F. *Phytochemistry* **1992**, *31*, 259–261; (b) Singh, V.; Singh, J.; Sharma, J. P. *Phytochemistry* **1992**, *31*, 2176–2177; (c) Singh, S.; Singh, J. *J. Indian Chem. Soc.* **2008**, *85*, 1159–1162; (d) Ref. 2c.

- (a) Thomson, R. H. J. Org. Chem. 1951, 16, 1082–1090; (b) Kraus, G. A.; Walling, J. A. Tetrahedron Lett. 1986, 27, 1873–1876.
 (a) Boeckman, R. K., Jr.; Dolak, T. M.; Culos, K. O. J. Am. Chem. Soc. 1978, 100, 7098–7100; (b) Kraus, G. A.; Woo, S. H. J. Org. Chem. 1986, 51, 114–116; (c) Iwao, M.; Kuraishi, T. Bull. Chem. Soc. Jpn. 1987, 60, 4051–4060; (d) Carreño, M. C.; Ruano, J. L. G.; Urbano, A. J. Org. Chem. 1992, 57, 6870–6876; (e) lio, K.; Okajima,
- A.; Takeda, Y.; Kawaguchi, K.; Whelan, B. A.; Akai, S.; Kita, Y. ARKIVOC 2003, 144-162.
- 6. Katoh, N.; Nakahata, T.; Kuwahara, S. *Tetrahedron* **2008**, 64, 9073– 9077.
- 7. The chromatographic purification of intermediate **14** was required to obtain **1** in a pure state.